Core vertebrate long range cis-regulatory interactions revealed by zebrafish – human comparative genomics

Yves Clément & Hugues Roest Crollius

GTGC Lyon 01/07/2016

Enhancers as long range cis-regulatory regions

- Distal transcription factor binding sites = enhancers
- Our goals?
 - Identify these regions
 - Which genes they regulate
 - Which regulatory interactions are conserved: which functions are involved

Identifying putative enhancers analyzing various types of signals

~ 30 kb around the SOX10 gene human chromosome 22

Other types of data (CAGE), integration of signals

Identifying target genes

- Direct way: mutagenesis
- Simple way: nearest gene

Which one is the target gene?

- Indirect ways:
 - Epigenome editing using TALE technology
 - (Mendenhall EM, et al. 2013 Nat Biotechnol **31**(12):1133-1136.)
 - Mapping of coordinated chromatin state dynamics between enhancers and genes
 - (Ernst J. et al. 2011 Nature **473**(7345): 43-49.)
 - Chromatin Capture Technologies (3C 4C 5C HiC Capture HiC)

Splinter E.. 2012. *Methods* **58**(3): 221-230.

Mifsud, B. et al. 2015. *Nature Genetics*, **47**(6), 598–606.

Predicting enhancer – target gene interactions by conservation of physical link

- Enhancer & target gene link is functional: mutations disrupting it will be eliminated by natural selection
- Computation of a co-segregation score for each potential target gene
- Most likely target gene = gene with most evolutionary conserved link with an enhancer

Long-range evolutionary constraints reveal *cis*-regulatory interactions on the human X chromosome

Magali Naville^{1,2,3,*}, Minaka Ishibashi^{4,*}, Marco Ferg^{5,*}, Hemant Bengani^{6,*}, Silke Rinkwitz⁴, Monika Krecsmarik⁷, Thomas A. Hawkins⁸, Stephen W. Wilson⁸, Elizabeth Manning⁴, Chandra S.R. Chilamakuri⁹, David I. Wilson¹⁰, Alexandra Louis^{1,2,3}, F. Lucy Raymond¹¹, Sepand Rastegar⁵, Uwe Strähle⁵, Boris Lenhard¹², Laure Bally-Cuif⁷, Veronica van Heyningen⁶, David R. FitzPatrick⁶, Thomas S. Becker^{4,13,**} & Hugues Roest Crollius^{1,2,3,**}

Finding the most likely target gene

Goals of this study

ARTICLE

Received 1 May 2014 | Accepted 12 Mar 2015 | Published 24 Apr 2015

DOI: 10.1038/ncomms7904 OPEN

Long-range evolutionary constraints reveal *cis*-regulatory interactions on the human X chromosome

Magali Naville^{1,2,3,*}, Minaka Ishibashi^{4,*}, Marco Ferg^{5,*}, Hemant Bengani^{6,*}, Silke Rinkwitz⁴, Monika Krecsmarik⁷, Thomas A. Hawkins⁸, Stephen W. Wilson⁸, Elizabeth Manning⁴, Chandra S.R. Chilamakuri⁹, David I. Wilson¹⁰, Alexandra Louis^{1,2,3}, F. Lucy Raymond¹¹, Sepand Rastegar⁵, Uwe Strähle⁵, Boris Lenhard¹², Laure Bally-Cuif⁷, Veronica van Heyningen⁶, David R. FitzPatrick⁶, Thomas S. Becker^{4,13,**} & Hugues Roest Crollius^{1,2,3,**}

- 1. Identify functional enhancer target gene interactions in zebrafish
- 2. Identify ancestral gene regulation circuits in vertebrates
- 3. Gain insights on enhancer evolution in vertebrates

Can we identify functional enhancer – target gene interactions?

Analysis of two independent sets of species for human and zebrafish

GTGC01/07/2016

Putative enhancers are marked with functional features

	# of enhancers with a predicted target gene	# of target genes
human	1,331,659	18,344
zebrafish	77,560	20,201

GTGC01/07/2016

ENCODE project

Testing functional interactions with CRISPR-Cas9

Collaboration with Patrick Torbey & Pascale Gilardi (Patrick Charnay team, IBENS)

Testing enhancers in zebrafish Enhancers with signals of:

- Active chromatin (H3K4me1, H3K27ac)
- Sequence conservation (phyloP)
- Orthologous regulation with human First-hand test of conservation of syntenybased method

gene	enhancer	pathology	rank
gria3b	chr14_1222	mental retardation	intronic
pcdh7b	chr7_8050		intronic
irx1b	chr19_2678	macular dystrophy	neighboring
heyl	chr19_3005		neighboring
cx35b/Gjb3	chr20_813	deafness	jumping
robol/robo2	chr15_4050		

What are the conserved regulatory interactions in vertebrates?

Finding orthologous enhancers and target genes

	# of orthologous enhancers with orthologous target genes		# of orthologous target genes
human	397,524	150,011	11,053
zebrafish		53,100	13,299

What functions do these orthologous target genes of orthologous enhancers have?

GO term enrichment analysis

human		zebrafish		
GO term	rank	GO term	rank	
chondrocyte development	4	neuron recognition	I	
dorsal/ventral axis specification	8	axon guidance	4	
brain morphogenesis	9	neuron projection guidance	7	
organ induction	12	retina development in camera-type eye	8	
axonal fasciculation	18	embryonic viscerocranium morphogenesis	14	
myoblast fusion	19	determination of bilateral symmetry	17	
neuron recognition	21	specification of symmetry	18	
dendrite morphogenesis	22	determination of left/right symmetry	19	
neuromuscular junction development	24	neuron differentiation	27	
cardiac chamber morphogenesis	25	tissue development	28	

Orthologous genes with conserved regulatory regions are enriched for developmental functions

Enhancer – TSS interaction distances in human and zebrafish

- Large scale characterization of enhancer TSS interaction domains and distances in human (Capture Hi-C)
- Such data unavailable in zebrafish
- Are enhancer TSS interaction distances linked with genome size?

Linking co-segregation score and distance to target gene

- Link between distance to target gene and co-segregation score
- Suggests a link between genome size and enhancer TSS interaction distances

Link between genome size and enhancer – TSS interaction distance

• Enhancer – TSS interactios distances scale with genome size

GTGC01/07/2016

Fate of regulatory regions following a whole genome duplication

Focusing on the whole genome duplication in fish

GTGC01/07/2016

Possible fate for enhancers following WGD

Possible fate for enhancers following WGD

Biased retention of enhancers on one copy?

median probability	# of cases w/ p < 0.05
0.03125	971 / 1794

Conservation of enhancers on both copies?

median probability	# of cases w/ p < 0.05
0.275	355 / 1215

		biased retention	
		p ≥ 0.05	P < 0.05
both copies	p ≥ 0.05	434	425
	p < 0.05	86	267

Retention of enhancers following WGD is mostly random or biased on one copy.

Link between regulation conservation and expression conservation

Early developmental stages show conservation of expression

- Ohnologous genes with overlapping enhancers
 show signals of conserved expression
 Conserved transcription factor binding sites?
- This feature is true for early developmental stages in zebrafish.

Conclusions

- Large-scale predictions of long range cis-regulatory interaction in two vertebrate genomes
- Predicted elements overlap functional marks
- Conserved regulatory interaction in vertebrate are linked with developmental functions.
- Enhancer TSS interaction distances scale with genome size
- Random or biased conservation towards one ohnolog of enhancers following WGD
- Conservation of expression for ohnologs with conserved regulatory regions for genes expressed in early developmental stages

Hugues Roest Crollius

Magali Naville **Camille Berthelot** Alexandra Louis Joseph Lucas Lambert Moyon **Amélie Peres** Christine Sacerdot

www.cnrs.fr