The evolving human transcriptome

Number of non-coding RNAs in the human genome

non-coding RNA annotation based on 7,000 RNA-seq samples

Iyer et al., Nature Genetics, 2015

Long non-coding RNAs (IncRNAs)

- LncRNAs: long (often poly-adenylated \& spliced) transcripts lacking protein-coding potential.
- Reported roles in gene expression regulation:
- recruitment of chromatin-modifying complexes
- transcriptional and post-transcriptional regulation
- regulation in cis or in trans
- competition for miRNAs

Functional RNAs or transcriptional noise?

- IncRNA functions: experimental evidence for only ~200 IncRNAs at the moment
- What proportion of IncRNAs are simply transcriptional noise?

?

Nothing makes sense in (IncRNA) biology except in the light of evolution.

Theodosius Dobzhansky, 1973

An evolutionary approach to understand IncRNA

 functionality

5 developmental stages
RNA-sequencing for 11 species x 8 organs

Fabrice Darbellay

IncRNA repertoires

Fast evolution of IncRNA repertoires

Fast evolution of IncRNA sequences

Low expression and high testes-specificity for IncRNAs

- testis
- ovary
placenta
- liver
- kidney
heart
neural tiss.
protein-coding
\square old IncRNA (90-370 MY)
young IncRNA (0-25 MY)

IncRNA expressed predominantly in adult testes

Strong IncRNA expression during spermatogenesis

RNA-seq data from Soumillon, Necsulea et al., 2013

Rates of IncRNA expression evolution

Protein-coding gene expression levels

Spearman's rank correlation coefficient

0 1

Rates of IncRNA expression evolution

Protein-coding gene expression levels IncRNA expression levels

Is there selective constraint on IncRNA expression?

IncRNA

- brain
- kidney
- liver
testis

$$
\begin{aligned}
& \circ \text { E13.5/E15 } \\
& \circ \text { E17/E18.5 } \\
& \diamond \text { newborn } \\
& \triangle \text { adult } \\
& \nabla \text { aged }
\end{aligned}
$$

Expression conservation: (similarity between species) / (similarity within species)

Slower IncRNA expression evolution during embryonic development

- E13.5/E15
- E17/E18.5
\diamond newborn
\triangle adult
∇ aged

Slower IncRNA expression evolution during embryonic development

Long non-coding RNA evolutionary patterns

- Fast evolution of IncRNA repertoires and primary sequences
- Low expression levels
- Predominantly expressed during spermatogenesis
- Little evolutionary constraint on IncRNA expression levels
- Most (but not all) IncRNAs may be transcriptional noise

Acknowledgements

FNSNF

Acknowledgements

IncRNA detection: de novo prediction with RNA-seq

IncRNA detection: de novo prediction with RNA-seq

- challenges: gene fragmentation (10\% of annotated IncRNAs may be alternative UTRs)

IncRNA detection: protein-coding potential

- In silico: codon substitution frequency
(CSF) score
- Avoidance of mis-sense and non-sense changes in coding regions
- In vivo: ribosome profiling
- Isolation and high-throughput sequencing
 of ribosome-bound mRNA fragments (Ingolia, Weissmann, Bartel groups)

IncRNA detection: protein-coding potential

Fast evolution of IncRNA sequences

