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Do convergent evolution involve identical genetic pathways ?

e Many cases of phenotypic convergent evolution have been
described in nature

e Studies of the genetic bases of these events have mainly been
based on candidate genes like Prestin (Li et al. 2010) and
Hemoglobin (Natarajan 2015 etc)
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Genomic screens are now proposed to search for convergent
genomic changes.

Applied so far to systems with only two/three pairs of
convergent/non-convergent species.

Also true for convergent evolution at the level of expression
(Gallant 2014 ; Pankey 2014)

Heated discussions about the results (Parker 2013 ; Zou 2015;
Thomas 2015; Zhou 2015).

Convergenomix project
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Genome-scale detection of interspecies convergent evolution

1. How many convergent events are required so that we can
identify them ?

2. Can we detect convergent evolution in sequences and in
expression levels/profiles ?

3. Development of new methods to analyse convergent evolution
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How many convergent events are required so that we can iden-
tify them?

e Model of convergent sequence evolution that considers
explicitely the phylogeny

e Convergent/ ancestral branches follow different CAT60 profiles

e Convergence detected if posterior probability > 0.8
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The detection of convergent sequence evolution increases with
the number of pairs

e Simulations for 2-11 pairs, and for all possible profiles

e Sufficient power for genome-scale detection of interspecies

convergent evolution : about 5 pairs
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Can we detect convergent evolution in expression levels/profiles ?

e surface/subterranean Asellidae isopods
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Detecting of convergent evolution of expression also necessi-
tates multiple pairs

Random versus convergence
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Footprint of convergent evolution in PCA plots
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e Axis 1 (13%) : Molting
(“cuticule proteins”)

e Axis 2 (12%) : Phylogeny
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Footprint of convergent evolution in PCA plots
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e Axe3 (9%) : Phylogeny

e Axe4 (9%) : Ecology
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Interaction between divergence and ecology ?

e Effect of ecology but phylogenetic distance matters : Many
species needed !

e Refine the definition of gene families + missing genes
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Genome-scale detection of interspecies convergent evolution

1. How many convergent events are required so that we can
identify them ? — ideal : at least 5 events

2. Can we detect convergent evolution in expression
levels/profiles ? — ongoing analysis : yes in proaselles

3. Development of new methods to analyse convergent evolution
— Need a tool to create comparable reference transcriptomes
for many species
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Amalgam: an automated tool to annotate

RNA-seq data using gene family alignments from
other species and combine them

Carine Rey, Philippe Veber, Marie Sémon & Bastien Boussau
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Dataset building in Comparative genomics
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@ Primordial step for subsequent analyses
o Difficult to set up and reproduce the results

@ Mandatory to increase data set size




Dataset building in Comparative genomics
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@ Automated and reproducible pipeline

[Comparative genomic analyses]

o Easy to use
@ Relevant for large or small datasets

@ Can reconstruct accurate sequences efficiently




How does Amalgam work ?
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How does Amalgam work ?
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Encapsulation and Installation

Use of an unique conductor script

@ manage internal dependencies between modules
@ manage multi-threading and memory

@ manage recovery upon error

Installation is facilitated by a docker container
@ no need to install external dependencies -@
(Blast, Trinity ...)
docker
) GitHub

@ use on a cluster is easier

@ (local installation is also possible)




Preliminary test
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Preliminary test
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The first totally automated test

@ run in the docker container on an "empty” computer (8
threads, 128G RAM, Linux system)

@ run in 1 day




A majority of sequences reconstructed by Amalgam are

well placed in the phylogeny
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First check, positions of reconstructed sequences in phylogenies

@ Coherent positions according to the species tree

@ Ensembl trees may not be good reference




Conclusion

@ Amalgam increases data set size by adding new species with
RNA-seq data

@ Amalgam aims to reconstruct reliable phylogenies and
alignments for a large number of genes or gene families

@ Amalgam will be available in a format packaged to be easily
distributed and tested.

@ Work in progress, but close to a final stage.
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Simulations

Convergent event at a site S_i:

Ancestral profile:
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Overview - apytram

apytram principle
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apytram iteration process

/ Paired-end RNA-seq data |
1 1 2 1
! Formating of reads e S—' '
' in BLAST database L 2 [ N
: ' initialisation
| Database of reads 1
\ 1
T TTTTTETETEEEETI ST ST TIEEIE S STt TTm T mTT s N
- Blast bait sequence on Bait sequence \
! database of reads - - '
— — 1
: v - - !
1
. . oo v !
Filtered contig | Retrieve paired reads %:Q@_e '
become the @=@§2@ '
bait sequence ! - .
' # ) ! iteration
! de novo assembly contigs i
1
: v :
1
| Filtering of contigs '
' * filtered contig '
\ II
~improvement comparingto i
the previous iteration? H
;
Final contig

End




Available on github
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Home Ll v Pase |
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Any question or suggestion on the program can be addressed to: carine.rey@

Preamble

This software is inspired from aTRAM (see References) but was implemented in Python and Clons this whd locally

intemal strategies have been designed differently. hetps://github.con/Carinel | B

Why use apytram?

apytram allows the assembly of sequences from RNA-seq data (paired-end or single-end) using
one or more reference homologous sequences. The reference sequences can come from the
species of interest or from a different species.

Quick start

Installing apytram
To install apytram you need:

® First: to satisfy some dependencies -
i 40 doswnlnad anu <
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